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Abstract. We consider a reaction-diffusion system in crossed electric and magnetic fields lying on the
reaction plane. It is shown that a charge separation along the direction normal to the reaction plane
resulting in a diffusional flux may cause a differential flow induced chemical instability and stationary
pattern formation on a homogeneous steady state. This pattern is generically different from a Turing
pattern modified by the crossed fields. The special role of magnetic field is emphasized. Our theoretical
analysis is corroborated by numerical simulation on a reaction-diffusion system in three dimensions.

PACS. 82.40.Ck Pattern formation in reactions with diffusion, flow and heat transfer – 47.54.-r Pattern
selection; pattern formation – 05.45.-a Nonlinear dynamics and chaos

1 Introduction

The spontaneous formation of structure in spatially ex-
tended systems under far-from-equilibrium condition is
an active area of wide current interest [1,2]. The subject
has got its early impetus from the discovery of Turing
instability or diffusion-driven instability in an homoge-
neous reaction-diffusion system [3] and has grown in var-
ious directions over the decades. An important endeavor
in this development is how the oscillations, wave propa-
gation and patterns are affected by external fields. It has
been demonstrated that applying electric fields can have
a profound effect on the propagation of waves in ionic
chemical reactions, e.g., by causing wave splitting, accel-
eration or deceleration with effect of annihilation, produc-
tion of spirals from target patterns etc. [4–6]. A constant
external electric field may also generate a differential flow
induced stationary pattern or destabilize it under appro-
priate conditions [10–12]. The possibility of using electric
field as a control parameter for reaction front instabili-
ties has been examined [7]. It has been shown [8] that by
applying constant electric field separating the reactant an-
ions and autocatalyst cations, lateral instabilities can be
induced while planner fronts can be stabilized with electric
field in the opposite orientation. A close look into these
studies suggests that consideration of a small but finite
extension of the two-dimensional reaction plane along its
normal direction and the electric field-induced drift cur-
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rent of ions may lead to the development of interesting
cross effect when a constant magnetic field is allowed to
interact in an appropriate geometry. The object of the
present paper is to explore such a cross effect in a reaction-
diffusion system in three dimensions. In what follows we
show that when the crossed electric and magnetic fields are
applied, a charge separation along the direction normal to
the reaction plane containing the mutually perpendicular
fields, resulting in a diffusional flux may cause differential
flow induced chemical instability. This leads to stationary
pattern formation on a homogeneous stable state.

Although it is well-known that magnetic field can sig-
nificantly affect a number of chemical reactions which
include, for example, geminate radical pair recombina-
tion [13–15], auto-oxidation of benzaldehyde by oxygen
catalysed by Co(II) ions [16–18], the conspicuous fea-
ture of these work is the paramagnetic nature of the
key reacting species. Several living systems are also sus-
ceptible to the variation of magnetic field. Furthermore,
the effect of constant electric and strong magnetic field
has been investigated [9] in BZ reaction. The present
work represents how a magnetic field can induce pat-
tern due to differential flow in a reaction-diffusion sys-
tem even when the reacting species are not paramag-
netic, which is to the best of our knowledge has not
been investigated before. Second, this differential flow in-
duced pattern not only appears for a critical range of
magnetic field strength, but also vanishes beyond a spa-
tial extension normal to the reaction plane along which
the charge separation occurs. Third, we carry out our
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theoretical analysis and numerical simulation on a pro-
totype reaction-diffusion system (chlorite-iodide-malonic
acid (CIMA)) in three dimensions, which is the most well-
studied system studied to date for the investigation of pat-
tern formation and related issues from experimental point
of view [19].

The outline of the paper is as follows: we introduce
in Section 2 the basic equations for a reaction-diffusion
system in presence of crossed electric and magnetic fields
in a Hall type arrangement. In Section 3 we show how
a differential flow induced instability can be realized by
appropriate manipulation of the fields with help of linear
stability analysis. The numerical simulation on pattern
formation has been carried out in Section 4. The paper is
concluded in Section 5.

2 Reaction-diffusion system in crossed fields

We consider a reaction-diffusion system in three dimen-
sions in presence of crossed electric and magnetic fields,

ut +
−→�.

−→
ju = f(u, v) (1)

vt +
−→�.

−→
jv = g(u, v). (2)

Here u(x, y, z, t) and v(x, y, z, t) are the concentrations of
the activator and inhibitor species, respectively. f(u, v)
and g(u, v) are the reaction terms describing the kinetics.
ji (i = u, v) is the flux of concentration of the ith species
ci (i = u, v) and is comprised of two terms which are due
to spatial diffusion and applied field of forces as follows;

−→
ji = −Di

−→�ci −mi
−→
Fici (3)

Di is the diffusion coefficient of the ith species and mi is
given by mi = Di/kT , where k and T are the Boltzmann
constant and temperature, respectively. The Lorentz force
experienced by the ith ionic species with velocity vi and
charge zi|e| due to the electric field

−→
E and the magnetic

field
−→
B is given by

−→
Fi = zi|e|(−→E +−→vi ×−→

B ). The divergence
of concentration flux therefore yields

−→�.
−→
j = −D�2 ci − zi|e|(Di/kT )

−→�.(−→E +−→vi ×−→
B )ci. (4)

To proceed further we first assume that the constant elec-
tric field is weak and generates a steady electric current−→
J so that the displacement current term can be neglected
from Maxwell’s equation to obtain

−→�×−→
B = µ

−→
J , µ being

the permeability of the medium. Since by Ohm’s law we
have

−→
J = σe(

−→
E + −→v × −→

B ) and
−→�.

−→� × −→
B = 0 where σe

refers to electrical conductivity, one obtains

−→�.
−→
J = σe

−→�.(
−→
E + −→v ×−→

B ) = 0. (5)

Therefore from equations (4) and (5) we are led to the
following equation:

−→�.
−→
ji = −Di �2 ci − zi|e|(Di/kT )(

−→
E +−→vi ×−→

B ).
−→�ci. (6)

Fig. 1. The schematic experimental setup for the reaction-
diffusion system in crossed fields.

We now consider a reaction [19,20] with negative ions only.
An electric field is applied along x-direction to the reaction
plane xy which has a finite but small extension along z di-
rection. This causes a flow or drift current in the negative
x-direction [11,12,21]. In addition a magnetic field B lying
in the reaction plane points in the positive y-direction. As
a result the Lorentz force acts to deflect the negative ions
in the z-direction. Because of accumulation of opposite
charges on both sides of the reaction plane, a Hall electric
field EH builds up in the Z-direction that balances the
Lorentz force in the steady state and current flows only in
the x-direction. The situation is depicted in Figure 1. Also
the spatial extension of the xy reaction plane is assumed
to be much larger compared to that in z-direction so that
one may comprehend a differential flow along this direc-
tion. Thus the layer must be thick enough to allow the
formation of spatial structure for a finite residence time
of the reaction intermediate and a spatial extension of the
order of a wavelength. In accordance with the condition
for Hall effect we therefore assume that the velocity −→vi of
the ions is essentially due to the drift [22,23] because of
the constant electric field so that by Einstein’s relation we
may use −→vi = zi|e|(Di/kT )

−→
E . This implies we neglect al-

together any effect due to diffusion current. We then arrive
at the following two equations

ut = f(u, v) +Du �2 u+ zu|e|(Du/kT )
−→
E.

−→�u

+ (zu|e|Du/kT )2
−→
E ×−→

B.
−→�u (7)

vt = g(u, v) +Dv �2 v + zv|e|(Dv/kT )
−→
E .

−→�v

+ (zv|e|Dv/kT )2
−→
E ×−→

B.
−→�v. (8)

Equations (7, 8) form the basis of our analysis that follows.

3 Differential flow induced chemical
instability due to crossed fields

To illustrate the above scheme we now resort to the well
known reaction-diffusion system, Lengyel-Epstein model
for Chlorite-Iodide-Malonic Acid reaction [19,20]. The re-
action is made to occur in a gel, polyacrylamide. It is
essentially a five-variable model reduced to a two-variable
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one noting that the concentrations of all other variables
but chlorite and iodide remain more or less constant in
time. The time evolution of these two variables viz. I−
and ClO−

2 denoted by U(t) and V (t) respectively, are then
given by;

U(t)t = k
′
1 − k

′
2U(t) − 4k

′
3

U(t)V (t)
(α+ U(t)2)

(9)

V (t)t = k
′
2U(t) − k

′
3

U(t)V (t)
(α+ U(t)2)

. (10)

Here k′1, k
′
2 and k′3 and α are the kinetic constants of

the reaction. If we now consider the addition of starch
(which actually complexes with iodide) and allow diffusion
to occur in all three directions, the system now looks like
for U(x, y, z, t) and V (x, y, z, t),

Ut = k
′
1 − k

′
2U − 4k

′
3

UV

(α+ U2)
+DU∇2U (11)

(1/σ)Vt = k
′
2U − k

′
3

UV

(α+ U2)
+DV ∇2V. (12)

The dimensionless parameter σ arises due to the equi-
librium between starch and iodide (σ is defined as σ =
1 + S0

k1
k2

, k1, k2 are the forward and reverse rate con-
stants of the corresponding first order equilibrium reaction
between starch and iodide while S0 is the initial starch
concentration). The role of starch is not only to impart
coloration to the system but also to make the effective ra-
tio of diffusion coefficients different from the actual value
which is close to unity.

In the presence of crossed fields, i.e., electric field
along x and magnetic field along y direction the system of
equation get modified into (taking zu = zv = −1)

Ut = k
′
1 − k

′
2U − 4k

′
3

UV

(α+ U2)
+DU∇2U

− |e|(Du/kT )
−→
E .

−→�U + (|e|Du/kT )2
−→
E ×−→

B.
−→�U (13)

(1/σ)Vt = k
′
2U − k

′
3

UV

(α + U2)
+DV ∇2V

− |e|(Dv/kT )
−→
E .

−→�V + (|e|Dv/kT )2
−→
E ×−→

B.
−→�V. (14)

Now we substitute u = U√
α
, v = k

′
3V

k
′
2α

, x′ = x(k
′
2/Du)1/2,

y′ = y(k
′
2/Du)1/2, z′ = z(k

′
2/Du)1/2, t′ = k

′
2t, to obtain

ut = a− u− 4uv/(1 + u2) − ψux

+ φuz + uxx + uyy + uzz (15)

(1/σ)vt = [b(u− uv/(1 + u2))] − dψvx

+ d2φvz + d[vxx + vyy + vzz ]. (16)

Here ψ, φ, the electric and magnetic field contain-
ing terms are abbreviated as ψ = E |e|

kT (Du/k
′
2)

1/2,
φ = EB( |e|

kT )2Du(k′2/Du)1/2. Furthermore we have put

a = k′
1

k′
2
√

α
, b = k′

3
k′
2
√

α
. Also d is the ratio of the diffusion co-

efficients (d = Dv/Du) of the activator (ClO−
2 ) and in-

hibitor (I−). All the quantities d, a, b, u, v, x′, y′, z′, t′ as
well as ψ and φ in equations (15, 16) are dimensionless.
(For simplicity, from now onwards we drop the prime (′)
from x′, y′, z′, t′.)

The fixed point of the dynamical system is given by
uss = a/5 and vss = 1 + a2/25, i.e., the homogeneous
steady state is independent of b. This well-known model in
absence of field terms has been used for suggesting the re-
action dynamics of the first experimentally observed Tur-
ing pattern and latter on in many other related issues. An
important content of the present work is to extend the
model to include the effect of electric and magnetic fields.
For a fixed set of experimentally admissible dimension-
less parameter values of a, b and d it is possible to vary σ
by adjusting the initial concentration of starch, the com-
plexing agent in the Lengyel-Epstein model which plays
an important role in determining the stability of various
regimes. In absence of diffusion and external fields, the
Hopf bifurcation line (b vs. a), below which the system un-
dergoes stable oscillations is given by b = 3a/5−25/a. The
reaction-diffusion system on the other hand in absence of
external fields gives rise to Turing bifurcation line if the
curve (3da2 − 5ab− 125d)2 = 100abd(25 + a2) is plotted.
This curve is independent of σ. The homogeneous steady
state is unstable below this line. Thus as one increases
σ, the control parameter, the Hopf line shifts downwards
and once it crosses the Turing line diffusion-driven insta-
bility sets in resulting in initiation of pattern formation
under suitable boundary condition [24]. The focal theme
of the present investigation is to show that the application
of crossed electric and magnetic fields, however, may shift
the boundary line below the Hopf curve (for the same σ
value for which no instability arises in absence of fields)
giving rise to differential flow induced chemical instability
and pattern selection.

The crossed field induced instability can be exam-
ined by a linear stability analysis of the system (15)
and (16). To this end we begin with linearized version
of equations (15) and (16) as

∂ut = fu∂u+ fv∂v − ψ∂ux + φ∂uz

+ ∂uxx + ∂uyy + ∂uzz (17)

∂vt = gu∂u+ gv∂v − dψ∂vx + d2φ∂vz

+ d∂vxx + d∂vyy + d∂vzz (18)

where ∂u(= u(x, y, z, t)−uss) and ∂v(= v(x, y, z, t)− vss)
are small deviations from homogeneous steady state val-
ues uss and vss, respectively. fu, fv, gu, gv are the partial
derivatives of the reaction terms in (15) and (16), evalu-
ated at the steady state. A closer look into the linearized
equations (17) and (18) reveals that a Turing like form of
the spatio-temporal perturbation ∂u and ∂v (as cos kxx
cos kyy cos kzz exp(−λt), kx, kz and λ being the wave vec-
tors and frequency, respectively) can not work because of
the presence of the spatial first derivative terms. However
the presence of these terms suggests that they are reminis-
cent of the differential flow induced terms [26] that occur
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for a system involving activator and inhibitor kinetics in a
reactive flow resulting in instability. To explore the role of
spatially localized perturbation in a similar spirit we take
resort to spatial Fourier expansion of the form

(∂u, ∂v) =
1
2π

∫ ∞

−∞
(∂u0(k), ∂v0(k)) exp(λt+ ikxx+ ikzz)

× cos kyydkxdkydkz. (19)

Here λ satisfies the following relation which is obtained
by making use of the said form of the spatio-temporal
perturbation

λ2 − [fu − ikxψ + ikzφ− k2
x − k2

y + σgv

− iσkxdψ + iσkzd
2φ− σdk2

x − σdk2
y − σdk2

z ]λ

+ [fu − ikxψ + ikzφ− k2
x − k2

y − k2
z ][σgv − iσkxdψ

+ iσkzd
2φ− σdk2

x − σdk2
y − σdk2

z ] − σgufv = 0. (20)

The above equation gives the dispersion relation λ =
λ(kx, ky, kz). The equation is too cumbersome to arrive
at an explicit analytical condition for instability which is
given by Reλ > 0. Further this is subject to boundary con-
ditions for the spatio-temporal perturbations required for
the linear stability analysis. A physically allowed choice is
zero concentration gradient at the boundaries, such that
δ∂u
δξ = 0 at ξ = 0 and ξ = Lξ, where ξ is x, y or z. We im-

pose similar boundary conditions for ∂v. To understand
this effect it is instructive to consider only two discrete
modes for ∂u as illustration instead of the integral (19)

∂u = Aei(kxx+kzz) cos kyy +A′ei(k′
xx+k′

zz) cos k′yy.

The application of the above-mentioned boundary condi-
tions leads to

δ∂u

δz
|z=0 = iAkze

ikxxcoskyy

+ iA′k′ze
ik′

xx cos k′yy = 0 (21)
δ∂u

δz
|z=Lz = iAkze

ikxx+ikzLzcoskyy

+ iA′k′ze
ik′

xx+ik′
zLz cos k′yy = 0. (22)

Multiplying equation (21) by exp(ikzL) and on substrac-
tion of the resulting equation from (22) we are led to the
condition tan kzLz = tan k′zLz. This yields the condition
kz − k′z = 2nzπ

Lz
, nz = 1, 2, 3 . . . Exactly similar condition

may be derived for kx−k′x = 2nxπ
Lx

, nx = 1, 2, 3 . . . On the
other hand for y-direction the application of zero concen-
tration gradient boundary condition leads to ky = nyπ

Ly
,

ny = 1, 2, 3 . . .
Although illustrated for two nodes it is apparent that

the above argument can be extended to higher number of
modes further to associate discrete numbers correspond-
ing to wave number components and their combinations.
Since λ is a function of three variables λ(kx, ky, kz) the
search for the positivity of λ may be carried out by vary-
ing any two of them (say kx, ky) for a fixed value of the

Fig. 2. Dispersion relation: plot of Reλ on kx − ky plane for
kz = 0.6 for the parameter set a = 18.0, b = 1.5, d = 1.6,
σ = 5.9 for fixed electric field strength (ψ = 0.01 ) applied in
the x-direction and varied magnetic field strengths (a) φ = 0.0,
(b) φ = 0.2, (c) φ = 0.3 applied in y-direction.

other (say kz) in a surface plot. We draw two sets of such
surface plots for two different kz values in Figures 2 and 3.
For a suitable choice of the order of kz we may refer to
the condition kz − k′z = 2nzπ

Lz
For Lz = 10 and lowest

nz (nz = 1) a rough estimate for kz is approximately
of the order of 0.6. Keeping in view of this estimate we
then fix kz in Figures 2 and 3 as kz = 0.6 and 1.2 re-
spectively. A closer look into equation (20) also reveals
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Fig. 3. Dispersion relation: plot of Reλ on kx − ky plane for
kz = 1.2 for the parameter set a = 18.0, b = 1.5, d = 1.6,
σ = 5.9 for fixed electric field strength (ψ = 0.01 ) applied in
the x-direction and varied magnetic field strengths (a) φ = 0.0,
(b) φ = 0.2, (c) φ = 0.3 applied in y-direction.

that as kx and kz appear either quadratically or in imag-
inary part, the dispersion curves remain same for the re-
versal of sign of kx and kz. This may also be checked by
numerical computation. Thus the positive wave number
regions have been plotted in Figures 2 and 3. In Figure 2
we draw three surface plots for the planes Reλ as a func-
tion of kx and ky for a fixed kz = 0.6, for the parameter set
a = 18.0, b = 1.5, d = 1.6, σ = 5.9 and for a fixed electric

field of strength ψ = 0.01 applied along x-direction and
varied magnetic field strength (a) φ = 0.0, (b) φ = 0.2,
(c) φ = 0.3. All the eigenvalues are negative in absence of
magnetic field (φ = 0.0). The system however for the same
parameter set loses stability beyond φ = 0.8. In Figure 3
the loss of stability occurs at same φ(=0.3) when kz is set
at 1.2 and all other parameters are kept same as before.
The imaginary parts of λ in all these cases remain van-
ishingly small (Imλ ∼ 0) which implies the condition for
formation of stationary pattern.

4 Numerical simulation and pattern formation

Before going over to full numerical simulations it is neces-
sary to introduce the appropriate boundary conditions for
the problem described by equations (15) and (16) involv-
ing the differential flow terms due to electric and mag-
netic fields. In defining the fluxes we take care of the
field containing terms as well. Therefore we write for the
u-component

Jx =
∂u

∂x
− ψu

Jy =
∂u

∂y

Jz =
∂u

∂z
+ φu (23)

and for the v component

Jx = d
∂v

∂x
− ψv

Jy = d
∂v

∂y

Jz = d
∂v

∂z
+ φv. (24)

The flux along x-derivative is not zero since in reality
the ionic species move in and out because of the electric
field. At the boundary the concentration gradients (not
the fluxes) are therefore taken to be zero. This condition
is also consistent with the form of spatio-temporal pertur-
bation used in our linear stability analysis.

The computations were performed using
equations (15) and (16) by explicit Euler method
on a three dimensional grid 200 × 200 × 10 with
�x = �y = 1.0, �z = 1.0 and time step �t = 0.0005
and with zero flux (concentration) boundary conditions.
The parameter set used allows the system to stay in
the Hopf region for σ = 5.9 and the system remains
homogeneous. The simulations were started with spatially
random perturbation of 1% around the steady state. As
the constant external electric field (dimensionless value
ψ = 0.01) is applied along positive x-direction one ob-
serves (Fig. 4) an inhomogeneous spatial structure in the
form of stationary spots only when a magnetic field over
a certain strength along positive y-direction is applied
simultaneously in the reaction plane. Our numerical
simulation shows that for the given value of electric field
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Fig. 4. Magnetic field induced transition of Hopf instability to
Turing instability: numerically simulated (in three dimensions)
spatial pattern in CIMA system for a = 18.0, b = 1.5, d =
1.6, σ = 5.9 (grid size 200 × 200 × 10 with �x = �y = 1.0,
�z = 1.0). Bright pixels represent high ClO−

2 concentration.
(a) φ = 0.0, (b) φ = 0.2, (c) φ = 0.3. The electric field
(ψ = 0.01) is applied in the reaction plane along x-direction
and magnetic field in the same plane along y-direction is varied.

Fig. 5. An enlarged picture of a small area (50 × 50) taken
from the net 200 × 200 area shown in Figure 3b.

strength the spatial inhomogeneity appears only beyond
a critical magnetic field strength (dimensionless value
higher than φ = 0.2). A typical magnetic field induced
pattern is drawn in Figure 4b for φ = 0.2. A comparison
between linear stability analysis and numerical simulation
in terms of the observed wavenumbers seems pertinent.
It appears from Figure 3c that instability should appear
at ky close to zero. A look into Figure 4 clearly reveals
that a distinct wave number can be associated with the
numerically simulated pattern. As pointed out earlier
the application of zero concentration gradient boundary
condition on the spatiotemporal perturbation in the linear

stability analysis yields k2
y =

n2
yπ2

L2
y

. For around ten nodes
in the y direction (Fig. 5), ny = 10 and Ly = 200, ky is
approximately 0.15 which corroborates with the linear
stability analysis. An enlarged version of the selected area
of Figure 4b is shown in Figure 5. The stable structure
tends to vanish at higher strengths of the magnetic field
as shown in Figure 4c.

It is also instructive to look at the role of diffusion
along z-direction in the context of cross-field induced ef-
fects we are studying. This has been illustrated in Figure 6
where we have displayed the variation of concentration
along this direction at two different sites of the xy-plane.
The diffusional flux along z is a consequence of Lorentz
force acting on the ionic species in the reaction system. It
also follows from Figure 6 and our numerical experience
that the qualitative nature of variation of concentration
along z remains the same regardless of the specificity of
the site of the xy reaction plane.

Fig. 6. The variation of concentration of u along z-axis at two
different sites of the xy plane (50, 50, continuous line) and (2.5,
2.5, dotted line).

Fig. 7. Numerically simulated (in three dimensions) field dis-
torted Turing pattern for a = 18.0, b = 1.5, d = 1.6, σ = 7.0
(grid size 200×200×10 with �x = �y = 1.0,�z = 1.0). Bright
pixels represent high concentration of ClO−

2 for (a) ψ = 0.0,
φ = 0.0; (b) ψ = 0.01, φ = 0.3; (c) ψ = 0.01, φ = 0.4 (the
electric field (ψ) being applied in the reaction plane along
x-direction and magnetic field (φ) in the same plane along
y-direction).

Our numerical experience shows that beyond a certain
thickness of the reaction plane the system tends to be
homogeneous. It is therefore apparent that although the
activator and the inhibitor ions are diamagnetic in charac-
ter, the magnetic field in reaction-diffusion system in ad-
dition to the diffusional flux along the direction of charge
separation plays an important role in pattern formation
and selection. We emphasize that the shift of the stability
boundary in generating spatial structure due to differen-
tial flow by application of magnetic field is different from
the scenario that leads to Turing pattern. To illustrate
we now consider the following situation. For σ = 7.0 the
reaction-diffusion system in absence of the applied fields
exhibits the usual Turing pattern in the form of spots as
shown in Figure 7a. Application of the electric and the
magnetic fields (ψ = 0.01 and φ = 0.2) results in defor-
mation of pattern (Fig. 7b). As the electric field strength
is kept constant and the magnetic field is increased one ob-
serves greater distortion of pattern (Fig. 7c). Thus the sce-
narios depicted in Figure 4 illustrating the pattern forma-
tion due to differential flow induced instability and those
in Figure 7 displaying the modification of Turing pattern
by crossed fields are generically distinct
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Before closing this section a few points regarding
the observability of the effect in chlorine dioxide-iodide-
malonic acid system seems pertinent. To meet the
condition of the cross-field effect the reaction plane
should be thin but at the same time must allow a
perceptible separation of the charges along z-direction.
Since the effect of electric field on Turing Pattern in
this system has already been an aspect of experimen-
tal study it is worthwhile to look for the effect by
simultaneously applying the magnetic field with imple-
mentation of such a set-up [12]. The required magnitude
of the electric and magnetic field strength E and B
may be estimated in actual terms from the dimension-
less expressions ψ = E|e|

kT (Du

k′
2

)1/2 = EF
RT (Du/k

′
2)

1/2 and
φ = EB( |e|

kT )2Du(k′2/Du)1/2 = EB( F
RT )2Du(Du/k

′
2)

−1/2

where k′2 is expressed as k2 times initial concentration
of ClO2,[ClO2]0. Putting k2 = 6 × 103 mole−1 lit s−1,
[ClO2]0 = (1/6) × 10−3 moles/lit and DClO2(=Du) =
1 × 10−5 cm2/s, one requires the electric field E as
0.06 Volt/cm to correspond ψ = 0.01 and magnetic
field B as 60 Gauss to correspond φ = 0.1 at tem-
perature 25 ◦C to realize a typical pattern induced by
crossed-fields.

5 Conclusion

In conclusion, we consider a reaction-diffusion system in
crossed electric and magnetic fields. It is shown that a
charge separation of the reacting species across the reac-
tion plane may result in differential flow induced chemical
instability and a spatial inhomogeneity on a homogeneous
stable state resulting in pattern formation. The distinc-
tive role of magnetic field in creating spatial inhomogene-
ity even when the reacting species are not paramagnetic
is thus immediately apparent. The situation is different
from those pertaining to the control of traveling waves by
magnetic fields where one considers paramagnetic reacting
species. We hope that the present formulation of reaction-
diffusion system in electro-magnetic fields will be useful
for further investigation from theoretical as well as from
experimental point of view.

Thanks are due to the CSIR, Government of India, for partial
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